An Efficient Algorithm for the Detection and Classification of Horizontal Gene Transfer Events and Identification of Mosaic Genes
نویسندگان
چکیده
In this article we present a new algorithm for detecting partial and complete horizontal gene transfer (HGT) events which may give rise to the formation of mosaic genes. The algorithm uses a sliding window procedure that analyses sequence fragments along a given multiple sequence alignment (MSA). The size of the sliding window changes during the scanning process to better identify the blocks of transferred sequences. A bootstrap validation procedure incorporated in the algorithm is used to assess the bootstrap support of each predicted partial or complete HGT. The proposed technique can be also used to refine the results obtained by any traditional algorithm for inferring complete HGTs, and thus to classify the detected gene transfers as partial or complete. The new algorithm will be applied to study the evolution of the gene rpl12e as well as the evolution of a complete set of 53 archaeal MSA (i.e., 53 different ribosomal proteins) originally considered in [13].
منابع مشابه
SFLA Based Gene Selection Approach for Improving Cancer Classification Accuracy
In this paper, we propose a new gene selection algorithm based on Shuffled Frog Leaping Algorithm that is called SFLA-FS. The proposed algorithm is used for improving cancer classification accuracy. Most of the biological datasets such as cancer datasets have a large number of genes and few samples. However, most of these genes are not usable in some tasks for example in cancer classification....
متن کاملTowards an accurate identification of mosaic genes and partial horizontal gene transfers
Many bacteria and viruses adapt to varying environmental conditions through the acquisition of mosaic genes. A mosaic gene is composed of alternating sequence polymorphisms either belonging to the host original allele or derived from the integrated donor DNA. Often, the integrated sequence contains a selectable genetic marker (e.g. marker allowing for antibiotic resistance). An effective identi...
متن کاملIdentification of Alzheimer disease-relevant genes using a novel hybrid method
Identifying genes underlying complex diseases/traits that generally involve multiple etiological mechanisms and contributing genes is difficult. Although microarray technology has enabled researchers to investigate gene expression changes, but identifying pathobiologically relevant genes remains a challenge. To address this challenge, we apply a new method for selecting the disease-relevant gen...
متن کاملFeature Selection and Classification of Microarray Gene Expression Data of Ovarian Carcinoma Patients using Weighted Voting Support Vector Machine
We can reach by DNA microarray gene expression to such wealth of information with thousands of variables (genes). Analysis of this information can show genetic reasons of disease and tumor differences. In this study we try to reduce high-dimensional data by statistical method to select valuable genes with high impact as biomarkers and then classify ovarian tumor based on gene expression data of...
متن کاملAccurate Fruits Fault Detection in Agricultural Goods using an Efficient Algorithm
The main purpose of this paper was to introduce an efficient algorithm for fault identification in fruits images. First, input image was de-noised using the combination of Block Matching and 3D filtering (BM3D) and Principle Component Analysis (PCA) model. Afterward, in order to reduce the size of images and increase the execution speed, refined Discrete Cosine Transform (DCT) algorithm was uti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013